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In this paper, we demonstrate that by using a mathematical physics approach—focusing attention

on the physics and using mathematics as a tool—it is possible to visualize the formation of the

transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach

looks at the mathematical problem and then tries to impose a physical interpretation. For

cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation,

and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in

the description of the transverse modes. The Neumann functions are deemed non-physical due to

their singularity at the origin and are eliminated from the final description of the solution. In this

paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the

Neumann function is physically necessary to describe fully and properly the formation of the

propagating transverse modes. With this approach, we also show that the field outside a dielectric

waveguide arises in a natural way. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4976698]

I. INTRODUCTION

In the work of modeling a physical phenomenon, it is
sometimes easy to concentrate on understanding the intrica-
cies of the mathematical methods employed to obtain the
solutions that attempt to describe the problem at hand, and to
be distracted from the significance of the actual physical pro-
cess in question. Once one has successfully found the mathe-
matical solution, the physical process itself may not be
properly addressed and emphasized, and in the worst cases it
may even be lost.

In this article, we deal with the description of the modes in
cylindrical waveguides, where typically the physical phe-
nomena involved are treated in such a way that the balance
between the mathematical methods used and the physical
constraints of the problem is tipped towards the former, lead-
ing to a somewhat unsatisfactory physical description of the
formation of the modes in the waveguides. In this regard, it
is worth remembering the words of Sommerfeld in the pref-
ace of his book on partial differential equations,1 a book
with some physics, but whose subject was mathematics: “We
do not really deal with mathematical physics, but physical
mathematics; not with the mathematical formulation of

physical facts, but with the physical motivation of mathemat-
ical methods. The oft-mentioned prestabilized harmony
between what is mathematically interesting and what is
physically important is met at each step and lends an esthetic
- I should like to say metaphysical - attraction to our sub-
ject.” Of course, the last statement can apply in either direc-
tion, mathematical physics or physical mathematics.

In order to provide a framework for the work presented
here, let us exemplify the difference between the physical
mathematics (p-mathematics) and the mathematical physics
(m-physics) approaches alluded to by Sommerfeld and which
we will use in the rest of this paper. Consider the problem of
finding the transverse modes in a planar (or slab) dielectric
waveguide. On the one hand, the p-mathematics approach is
used when presenting the mathematical solutions and bound-
ary conditions in different regions of the slab. These solu-
tions and boundary conditions are matched at each interface
between regions, and the description is said to be obtained.
On the other hand, the m-physics approach will look instead
at the physical wave as it travels through each of the regions
of the slab. We can then observe how the wave is reflected
and transmitted as it reaches an interface between the media
in question and then set the equations of the mathematical
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model according to the boundary conditions. We would like
to note that both approaches attempt to describe the same
phenomenon, however, they may emphasize different
aspects of the description.

In the case of the example used above, the p-mathematics
approach will give the sine and cosine functions as solutions
inside the waveguide, and the arguments of these functions
are set to satisfy the boundary conditions. In a different man-
ner, the m-physics approach provides a more extensive phys-
ical picture, e.g., that within the waveguide there will be
traveling waves suffering reflections at both interfaces that in
turn will have transverse components with the same fre-
quency but traveling in opposite directions. In this way, for
some particular conditions, the transverse modes in wave-
guides happen to be transverse standing waves also referred
to as stationary waves.2,3

The m-physics approach is sometimes discussed in the
study of planar waveguides, mostly for the cosine function
solution4–6 but, to the best of our knowledge, it has never
been used for cylindrical waveguides and optical fibers. For
the latter two, the p-mathematics approach is the standard
one, presenting the solutions in terms of the Bessel functions
of the first and second kind, then discarding the latter arguing
that they are unphysical or not the proper ones since they are
singular at the axis of the waveguide.7–15 Unfortunately, for
such arguments, based on the mathematical properties of the
functions, without further consideration of the physical
meaning of these properties, the physics of what really might
be happening in the physical system of the cylindrical wave-
guides can be lost.

In this work, we endeavor to use the mathematical formu-
lation of the physical facts, i.e., the mathematical physics
approach, to present a detailed physical analysis of the for-
mation of modes in cylindrical waveguides. We demonstrate
physically, with the help of propagating wave analysis, that
the well-known Bessel modes are in fact the result of the
interference of the counter-propagating transverse compo-
nents of traveling conical waves. Contrary to the prevailing
approach in the literature, we show that to fully describe the
propagating nature of the wave field in the core and the clad-
ding, it is necessary to use both Hankel functions, con-
structed by the complex superposition of the Bessel function
of the first kind Jm, and Bessel functions of the second kind,
or Neumann functions, Nm. Moreover, the singular behavior
of these functions, in particular, of the Neumann functions,
at the origin, is easily explained in clear physical terms.
Finally, our mathematical physics traveling-wave approach
shows how the traveling wave described by the Hankel func-
tion within the waveguide becomes, in a natural way, an eva-
nescent wave at the interface between the core and the
cladding of dielectric cylindrical waveguides, in the same
manner as in planar waveguides.

II. MATHEMATICAL PHYSICS OF CYLINDRICAL

WAVEGUIDES

In the literature on electromagnetic theory of wave propa-
gation in cylindrical waveguides, one encounters the trans-
verse fields described as satisfying the Bessel differential
equation. The set of independent solutions of this equation
are the Bessel functions of the first kind, Jm, as well as the
Bessel functions of the second kind, Nm, also known as
Neumann functions.

In the literature related to cylindrical waveguides, the
treatment usually follows what we are referring to as the p-
mathematics approach. In other words, a treatment inclined
more towards the mathematical approach. It is commonly
argued that a general solution can be constructed as a linear
combination of the two types of Bessel functions, namely,
E qð Þ ¼ AJm qð Þ þ BNm qð Þ, where q is the cylindrical radial
coordinate and where A and B are constants.7–15 This super-
position is mathematically correct but unfortunately it may
not give complete physical insight to the problem at hand.
The argument used in this p-mathematics approach is along
the lines of “looking for the physical solution” inside the
cylindrical waveguide, which leads to the conclusion that the
constant B in the superposition above needs to be zero; the
Neumann function has to be discarded because, for any m, it
is singular at the origin q¼ 0, diverging to minus infinity.
This argument considers that such behavior of the solution is
inconsistent with physical fields within the core of the wave-
guide and that the only “proper” and physically allowed
solution that is bounded is Jm, the Bessel function of the first
kind.

The main aim of this paper is to show that in a full
description and analysis of a cylindrical waveguide, the
Neumann functions become a natural part of the solution
and, furthermore, that their presence provides a complete
physical picture of how the modes are formed in cylindrical
waveguides. In order to show this, we first solve the wave
equation or the Helmholtz equation in cylindrical coordi-
nates, r2E q;u; zð Þ þ k2E q;u; zð Þ ¼ 0. By applying separa-
tion of variables and using E q;u; zð Þ ¼ R qð ÞU uð ÞZ zð Þ as an
ansatz, we get three differential equations. Those for Z(z)
and U uð Þ are

d2Z zð Þ
dz2

þ k2
z Z zð Þ ¼ 0; (1)

d2U uð Þ
du2

þ m2U uð Þ ¼ 0; (2)

whose solutions (in complex form) are, respectively,

Z zð Þ ¼ e6ikzz (3)

and

U uð Þ ¼ e6imu: (4)

The third differential equation, corresponding to the radial
part R(q) of the ansatz, is the Bessel differential equation

d2

dq2
R qð Þ þ

1

q
d

dq
R qð Þ þ k2

q �
m2

q2

 !
R qð Þ ¼ 0; (5)

where we have defined k2
q ¼ k2 � k2

z . The solutions in com-
plex form are given by

H 1ð Þ
m kqqð Þ ¼ Jm kqqð Þ þ iNm kqqð Þ; (6)

and
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H 2ð Þ
m kqqð Þ ¼ Jm kqqð Þ � iNm kqqð Þ; (7)

which are known as the Hankel functions of the first and sec-
ond kind, respectively. The Hankel functions are singular at
q¼ 0 due to the presence of the singularity of the Neumann
function. Below we will show, however, that this singularity
has an actual physical meaning. Notice that Eq. (6), being
the Green’s function of the Helmholtz equation, represents
radially outgoing cylindrical waves; it implies that we have a
source of light that radiates energy radially.

We can now focus our attention on the physics of these sol-
utions. To simplify the description and the visualization, let us
take m¼ 0; the observations below apply as well for any m.
With the z-dependence included, the solutions of the wave

equation are H 1ð Þ
0 kqqð Þeikz and H 2ð Þ

0 kqqð Þeikz. These functions

represent conical waves with a total wave vector ~k ¼ kqq̂
þkzẑ, as shown in Fig. 1(a). The zeroth-order Hankel function

of the first kind H 1ð Þ
0 describes radially symmetric cylindrical

waves traveling away from the axis (outgoing waves). The
radial component of the outgoing conical wave on reflection at
the surface of the waveguide becomes an incoming conical

wave described by H 2ð Þ
0 —the zeroth order Hankel function of

the second kind H 2ð Þ
0 represents waves traveling towards the

axis (incoming waves). This situation is easy to visualize if the
propagation of the conical wavefronts is known. The evolution
of the propagation of a transverse section of the conical wave-
fronts is shown in Fig. 2, where the dots that are not black rep-
resent an outgoing conical wave while the black dots represent
an incoming conical wave. It is possible to observe that a
reflected incoming conical wave is generated when the outgo-
ing one has reached the border and that the incoming conical
wave is transformed into an outgoing wave when the former
passes through the axis of the waveguide. It is important to
note that the transverse section of the conical wavefronts is
generated by the points ACDE from Fig. 1, and the transverse
section of the wavefronts is divided into representative sec-
tions, solid circles in Fig. 2.

Because each wave is the complex conjugate of the other,
the incoming and outgoing waves have the same frequency
and amplitude and, consequently, their transverse radial
components move in opposite directions; in superposition
the singular Neumann functions cancel out. An alternative
way to explain this fact is by means of mathematical physics:
the cylindrical waveguide supports cylindrical incoming
waves traveling towards the longitudinal axis (q¼ 0). As
they get closer and closer to the axis, the waves “collapse”
into a line, and it is actually this line that simultaneously acts
as the source from which the outgoing cylindrical waves
emanate. This is the physical explanation of the singularity
of the Hankel functions: within the waveguide there is simul-
taneously a sink and a source that cancel out, resulting in the
J0 non-singular stationary wave solution.16 In the core of the
cylindrical waveguide, both waves exist simultaneously; that
is, the solution must be given by

E q; zð Þ ¼ H 1ð Þ
0 kqqð Þ þ H 2ð Þ

0 kqqð Þ
h i

eikzz ¼ 2J0 kqqð Þeikzz:

(8)

In order to show the propagating wave behavior described
by the Hankel functions, we introduce their asymptotic
approximations and incorporate the harmonic temporal
dependence e�ixt of the wave equation17

H 1;2ð Þ
m kqqð Þeikzz � Affiffiffiffiffiffiffi

kqq
p e�i xt7kqqþkzzð Þ�ip

2
mþ1

2ð Þ: (9)

In this expression, the traveling wave behavior and the coni-
cal nature of the wavefronts are clear.

One may wonder how large the argument of the Hankel
functions must be in order for the asymptotic expression to
be valid. One finds in the literature (see, e.g., Ref. 17) that
this expression can be used when kqq� 4m2 � 1ð Þ=8 with
m� 1. To give a quantitative example, we can require that
the error be of the order of 10–2 or less; to achieve this we
must have

kqq � 5
j4m2 � 1j

8
: (10)

The approximation would now have the required accuracy
for approximating the Bessel functions of the first kind as
well as for the Neumann functions, including those of zero
order. A comparison is shown in Fig. 3 (for m¼ 0) where the
Bessel and Neumann functions, together with their asymp-
totic approximations, are superposed in the top plot, and the
simple differences are shown in bottom plot.

In a slab waveguide, there exist incident and reflected
waves inside it, as described in Refs. 4 and 5. We note that
inside a cylindrical waveguide there also exist incident as
well as reflected waves at and from the cylindrical wall of
the waveguide. In both cases, when the waves are added
together they form stationary waves inside the waveguide.

Fig. 1. (a) Representation of conical counter-propagating waves that are sol-

utions to the Helmholtz equation in a cylindrical waveguide. Each conical

wave corresponds to a Hankel function. (b) The sum of conical counter-

propagating waves generate a Bessel function of order zero.

Fig. 2. The propagation evolution of the conical wavefronts.
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For a slab waveguide, this is discussed in the literature; for a
cylindrical waveguide we discuss this here for the first time.
From Eq. (8), the solution can be defined as the sum of coni-
cal counter-propagating waves.

It is well accepted that the stationary modes inside a slab
waveguide are generated by the sum of counter-propagating
waves bouncing back and forth from the plane walls of the
slab. With this slab-waveguide picture in mind, we introduce
another approach to the description of the stationary waves
inside a cylindrical waveguide. The latter is possible by
rotating the slab waveguide p radians, as shown in Ref. 18.
Since plane waves in cylindrical coordinates can be written
as eikq x cos uþy sin uð Þþikzz, the continuous interference of these
counter-propagating plane waves in the p rotation can be
represented by

1

p

ðp

0

cos kq x cos uþ y sin uð Þ
� �

eikzzdu

¼ 1

2p

ð2p

0

eikq x cos uþy sin uþikzzð Þdu � J0 kqqð Þeikzz: (11)

In a similar way, under a change of variables it can be dem-
onstrated that if the plane waves have an azimuthal phase
shift of the form eimu as they rotate, the resulting field is
described by

Jm kqqð Þe�imhþikzz ¼ 1

2p

ð2p

0

eikqq cos aþsin að Þ�imaþikzzda ;

(12)

where h is now the azimuthal variable.
For m¼ 0, the wavefront generated by the rotation of the

plane waves forms two conical surfaces; in Fig. 1, cone
ABC represents the outgoing conical wave incident to the
inside wall of the waveguide, and cone DBE represents the
reflected conical incoming wavefront. This situation is
easy to visualize due to the change in sign of the kq compo-
nent. From Fig. 1, we can see that the vector ~k and its

components kq and kz are coplanar vectors. Notice that the
integral in Eq. (11) creates the cone of wavevectors.

Also observe that with the rotation of the planar slab descrip-
tion the singular Neumann function cannot be constructed, and
this solution is discarded in a natural way. Physically, we can
also deduce this from Eqs. (6) and (7); in order to get the
Neumann solution we would have to subtract the waves, which
would imply a relative phase of p between the incoming and
outgoing conical waves along the whole waveguide, something
that does not occur. In this manner, the approach presented
here contributes to making the modes inside the cylindrical
waveguide more physically understandable.

We will now demonstrate how the traveling waves inside
the core become, in a natural way, the evanescent wave at the
cladding. We have said that in the core the function
H 1ð Þ

0 kqqð Þeikz represents the outgoing wave. At the cylindrical
waveguide surface q¼ a the incident wave, by total reflection,
must give rise to an evanescent field outside the core. In the
same way as occurs with the slab waveguide, the transverse
wave number becomes purely imaginary, kqt¼ ijqt, resulting
in the Hankel function of the first kind being transmitted to
the outer part of the cylindrical waveguide. In this case, the
solution in this region is given by

E q > a; zð Þ ¼ H 1ð Þ
0 ijqqð Þeikzz: (13)

This equation can be rewritten using the modified Bessel
function of the second kind, Km jqqð Þ ¼ p

2
imþ1H 1ð Þ

m ijqqð Þ,17,19

and for m¼ 0 we have

E q > a; zð Þ ¼
2

p
K0 jqqð Þei kzzþp

2ð Þ: (14)

This result demonstrates the natural way in which the outgo-
ing traveling wave becomes an evanescent wave described
by the modified Bessel function K0(jqq).

The transmitted wave right at the cladding is

J0 jqað Þ ¼
eip

2

p
K0 jqað Þ

����
����; (15)

where we can observe that the amplitude coefficient of the
transmitted wave is given by jeip

2=pj. Moreover, the p/2 phase
shift can be interpreted as the rotation of the radial compo-
nent of the wavevector to create the surface waves.

We remark that it was not necessary to make any mathemati-
cal assumptions in order to end up with the radially evanescent
waves and the longitudinally traveling surface waves of Eq. (14)
at the surface of the cylindrical waveguide. In particular, this is
contrary to what is done in the physical mathematics approach
where the modified Bessel function Km is usually chosen over
the modified Bessel function Im because the latter function grows
to infinity at large q, while the former decays. In our analysis,
the direct use of the Hankel function as a solution inside the
waveguide gives rise naturally to the evanescent wave in the
form of the modified Bessel function Km without having to
make any further mathematical assumptions. Furthermore, in the
core the solutions we have obtained are also able to describe the
phenomena observed in tubular mirrors.20,21

Throughout this section, for the sake of clarity, the order
of the Hankel functions has been taken as zero (m¼ 0). In
Sec. III, we will briefly describe the solution of the wave-
fronts of higher-order modes (m 6¼ 0) inside of the cylindrical

Fig. 3. (a) The continuous curve is the Bessel function of the first kind and

the dashed curve is the Neumann function. The black asterisks and the open

circles represent the asymptotic approximations for the Bessel function and

the Neumann function, respectively. (b) The horizontal line represents an

error of 10–2. The continuous curve shows the difference between the

Bessel function and its asymptotic approximation; the dashed curve shows

the difference between the Neumann function and its asymptotic

approximation.
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waveguide. These modes are also known as skew modes in
the optical fibers literature.

III. HIGHER-ORDER MODES IN CYLINDRICAL

WAVEGUIDES

We will now turn our attention to the higher-order modes
in cylindrical waveguides, which have the solutions

Eom q;u; zð Þ ¼ e�i kzzþmuð ÞH 1ð Þ
m kqqð Þ

Eim q;u; zð Þ ¼ e�i kzzþmuð ÞH 2ð Þ
m kqqð Þ

(16)

in the core, and the solution

E q;u; zð Þ ¼
2

p
e�i kzzþm u�p

2ð Þ�p
2½ �Km jqqð Þ; (17)

in the cladding. The factor e�imu represents the phase rotat-
ing m times in a period of 2p, as shown in Fig. 4. This figure
shows the conical helicoidal wavefronts that, for higher-
order modes, take the place of the conical wavefronts corre-
sponding to m¼ 0 as shown earlier.

As the wavefront is a conical helicoid, the propagation
vector ~k follows a screw-like helical trajectory and its com-
ponents no longer lie on a plane perpendicular to the tangen-
tial plane of the cylinder at any given point.

IV. CONCLUSIONS

We have presented a discussion of the differences between
the physical mathematics and mathematical physics
approaches used to describe problems in physics. We have
demonstrated that in using the mathematical physics approach
some physical aspects of the propagation of electromagnetic
waves in cylindrical waveguides are recovered that would be
lost using the physical mathematics approach.

Having the traveling wave idea in mind, we demonstrated
that the waves inside the cylindrical waveguide are in fact
propagating conical waves. From a physical mathematics
point of view, these conical waves would never be seen
because they are described by the Hankel functions of the first
and second kinds, which have a singularity due to the pres-
ence of the singular Neumann functions. Nonetheless, with
the aid of the mathematical physics picture, we have shown
that the Neumann functions are a very important component
in the full description of the physics of these conical waves.
The standing waves inside the cylindrical waveguide, which
have a profile given by the Bessel function of the first kind,
are the result of the transverse counter-propagating compo-
nent of the conical waves described with the Hankel func-
tions. The counter-propagation results in the superposition of
the incoming and outgoing waves canceling out the term with
the Neumann functions in a natural manner, without the need

to arbitrarily discard them. Also, we demonstrated how the
outgoing wave becomes, in a straightforward manner, the eva-
nescent field when the condition for total internal reflection is
satisfied.

In general, the physics oriented method presented in this
paper, the mathematical physics approach, gives more physi-
cally rich insights into the modes of a cylindrical waveguide
than are given by the physical mathematics methods that are
more prevalent in the literature. This picture can also be
applied in quantum mechanics, elasticity, and other fields in
physics where wave equations appear in the corresponding
physical models.
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